Coordinate

Transformations

Say we know the location of a point, or the description of some scalar field in terms of Cartesian coordinates (e.g., $T(x, y, z)$).

What if we decide to express this point or this scalar field in terms of cylindrical or spherical coordinates instead?

Q: How do we accomplish this coordinate transformation?

A: Easy! We simply apply our knowledge of trigonometry.

We see that the coordinate values z, ρ, r, and θ are all variables of a right triangle! We can use our knowledge of trigonometry to relate them to each other.

In fact, we can completely derive the relationship between all six independent coordinate values by considering just two very important right triangles! \rightarrow Hint: Memorize these 2 triangles!!!

It is evident from the triangle that, for example:

$$
\begin{aligned}
& z=r \cos \theta=\rho \cot \theta=\sqrt{r^{2}-\rho^{2}} \\
& \rho=r \sin \theta=z \tan \theta=\sqrt{r^{2}-z^{2}} \\
& r=\sqrt{\rho^{2}+z^{2}}=\rho \csc \theta=z \sec \theta \\
& \theta=\tan ^{-1}[\rho / z]=\sin ^{-1}[\rho / r]=\cos ^{-1}[z / r]
\end{aligned}
$$

Likewise, the coordinate values x, y, ρ, and ϕ are also related by a right triangle!

From the resulting triangle, it is evident that:

$$
\begin{aligned}
& x=\rho \cos \phi=y \cot \phi=\sqrt{\rho^{2}-y^{2}} \\
& y=\rho \sin \phi=x \tan \phi=\sqrt{\rho^{2}-x^{2}} \\
& \rho=\sqrt{x^{2}+y^{2}}=x \sec \phi=y \csc \phi \\
& \phi=\tan ^{-1}[y / x]=\cos ^{-1}[x / \rho]=\sin ^{-1}[y / \rho]
\end{aligned}
$$

Combining the results of the two triangles allows us to write each coordinate set in terms of each other:

Cartesian and Cylindrical

$$
\begin{array}{ll}
x=\rho \cos \phi & \\
\begin{array}{ll}
x & =\sqrt{x^{2}+y^{2}} \\
y & =\rho \sin \phi \\
z & =z
\end{array} & \phi=\tan ^{-1}\left[\frac{y}{x}\right] \\
& \\
z=z
\end{array}
$$

Cartesian and Spherical

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & r=\sqrt{x^{2}+y^{2}+z^{2}} \\
y=r \sin \theta \sin \phi & \theta=\cos ^{-1}\left[\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
z=r \cos \theta & \phi=\tan ^{-1}\left[\frac{y}{x}\right]
\end{array}
$$

Cylindrical and Spherical

$$
\begin{aligned}
& \rho=r \sin \theta \\
& \phi=\phi \\
& z=r \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{\rho^{2}+z^{2}} \\
& \theta=\tan ^{-1}\left[\frac{\rho}{z}\right] \\
& \phi=\phi
\end{aligned}
$$

